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Abstract-The article presents a constitutive framework of large-strain elastoplasticity in both the
Lagrangian and the Eulerian geometric setting which takes into account anisotropic material
response. In summary, the key ingredients of this framework are: (i) the introduction of a plastic
metric which is assumed to describe locally the history-dependent inelastic material response in the
sense of an internal variable fonnulation, (ii) The definition of a convex elastic domain in the space
of the local stress-like variable conjugate to the plastic metric, denoted as the plastic force. (iii) An
equivalent Lagrangian and Eulerian representation of all constitutive functions as isotropic tensor
functions in tenns of an extended set of arguments, denoted as anisotropy variables. (iv) The set
up of normality rules for the evolution of the plastic metric and the anisotropy variables, yielding a
canonical symmetric form of the elastoplastic tangent moduli. (v) A geometrically exact decompo
sition of the set of constitutive equations into possibly decoupled volumetric and isochoric con
tributions, Applications of the constitutive framework are demonstrated by means of several con
ceptual model problems which cover isotropic, initial anisotropic and induced anisotropic
e1astoplastic response. :n 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Foundations general frameworks and formalisms for the construction of constitutive equa
tions for the phenomenological description of inelastic material response in solids have
been proposed by Noll (1958, 1972), Truesdell and Toupin (1960), Truesdell and Noll
(1965), Coleman and Gurtin (1967), Lubliner (1972, 1973), Coleman and Owen (1974),
Krawietz (1986), among others, see also the references therein. Several sets of constitutive
equations are established in the literature which cover the particular class of large-strain
elastoplastic materials. We refer to the classical work of Green and Naghdi (1965, 1966),
Lee (1969) and Mandel (1972, 1973) in this field, see also the review articles Hill (1978),
Havner (1982), Asaro (1983) and Naghdi (1990) and the references cited therein. The
textbooks Krawietz (1986), Lubliner (1990), Maugin (1992) and Havner (1992) give com
prehensive and comparative introductions to the subject. In this context, the microstructural
based theory for the description of finite elastoplastic deformations in ideal single crystals,
often denoted as the continuum slip theory, seems to have achieved a stage of common
acceptance in recent years, see for instance the work of Kroner (1960), Teodosiu (1970),
Rice (1971), Mandel (1972), Teodosiu and Sidorotf (1976), Hill and Havner (1982), Havner
(1982,1992) and Asaro (1983). On the other hand, a broad variety of purely macroscopic
theories of finite plasticity are controversially discussed in the literature. As pointed out by
Naghdi (1990), there is strong disagreement between several existing schools on nearly all
the relevant ingredients which form a finite plasticity theory. Topics under discussion are
for instance invariance requirements, possible geometric settings, identification of plastic
strains and elastic strains, possible decompositions of strain rates, the role of a plastic
rotation and a plastic spin, possible formulations of yield criteria, stress space or strain
space formulations, formulations of elastic response functions, yield criteria functions, flow
rules and hardening laws, etc. Differences of possible approaches thus become particularly
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evident in the description of anisotropic elastoplastic material response. See for example
Casey and Naghdi (1980, 1988), Lee (1980), Nemat-Nasser (1982), Mandel (1973), Dashner
(1986) and Dafalias (1985) for a discussion of some of these issues. In addition, sound
mathematically based theories for so-called materials with elastic range have been developed
in recent years based on the ideas of Pipkin and Rivlin (1965), see Owen (1968, 1970),
Silhavy (1977), Lucchesi and Podio-Guidugli (1988, 1990) and Lucchesi et al. (1992).
Geometrically exact algorithmic counterparts of nonlinear plasticity models suitable for
the numerical simulation of initial boundary problems in context with application of
finite element methods have been developed in the last decade. Due to the controversial
approaches mentioned above, these algorithmic settings are often restricted to isotropic
response where the different theoretical approaches can often be reconciled, as pointed out
for example by Lubliner (1990) and Ibrahimbegovic (1994). We refer in this context to the
work of Sima and Ortiz (1985), Sima (1988, 1992), Sima and Miehe (1992), Weber and
Anand (1990), Perie et al. (1990). Moran et al. (1990), Cuitifio and Ortiz (1992a, b), Miehe
(l995a, 1996a, b) and the references cited therein.

The goal of this work is to present a constitutive framework of large-strain macroscopic
elastoplasticity, suitable for large-scale numerical implementation, which takes into account
anisotropic material response. It can be considered as a subclass of the very general theory
of Green and Naghdi (1965) or the recent work of Antman (1995). However, it has some
new methodical features which are, in the opinion of the author, very attractive with regard
to the construction of concrete model problems, their numerical analysis and algorithmic
implementation. The key ingredients of the framework proposed here are summarized in
the abstract and discussed in the five items below.

(i) The notion of a plastic metric. In the first stage we introduce the notion of a plastic
metric which is assumed to describe locally the history-dependence of the elastoplastic
deformation process in the sense of an internal variable formulation. This notion turns out
to be very helpful with regard to a geometric understanding of the theory and is particularly
instructive for a setting up of concrete model problems. The evolution of the metric is
governed by a constitutive evolution equation, denoted as the flow rule. As a typical initial
condition we identify the plastic metric at the beginning of an elastoplastic deformation
process with the natural metric of the material reference configuration. Note that the choice
of a plastic metric as a symmetric, positive definite tensorial variable with six independent
components excludes a priori a possible plastic rotation of local material elements. Thus,
the frame presented here meets the invariance requirements discussed in Green and Naghdi
(1971), Casey and Naghdi (1980) and Haupt (1985). Observe furthermore, that the consti
tutive framework discussed here avoids the notion of a "plastic intermediate configuration ,.
as used by Lee (1969), Mandel (1972), Kratochvil (1973) and others.

(ii) Elastic domain in the space of the plastic force. The next crucial step is the definition
of a plastic force as the stress-like variable work-conjugate to the plastic metric. It appears
in the part of the dissipation inequality which characterizes the local plastic power. Then,
motivated by the structures of irreversible thermodynamics, a natural assumption is that
this variable drives the evolution of the plastic metric. Consequently, we assume an elastic
domain in the space of the plastic force governed by the traditional notion of a yield
criterion function. This assumption is a key ingredient of a constitutive frame of finite
plasticity presented here. In contrast to so-called strain-space formulations as proposed by
Naghdi and Trapp (1975), Besdo (1981), Sima (1988), Antman (1995) and others, we
adhere here to a traditional stress-space setting, which allows an adaptation of constitutive
structures of the geometrically linear theory. The connection of the plastic force with the
stresses depends on the choice of an elastic strain. Note that the elastic strain, which is
assumed to govern the stored free energy of a local material element, constitutes a particular
relationship between the natural metric on the current configuration and the plastic metric.
The introduction of this type of relationship is unnecessary for a general set-up of the
theoretical framework. We consider therefore, the definition of an elastic strain measure
and the resulting identification of the plastic force in terms of the stress as an application
of the theory. Examples are investigated in subsequent sections which are concerned with
applications.
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(iii) Representation in terms of isotropic tensor functions. A further key ingredient of
the constitutive structure discussed here is its obvious invariance with respect to the geo
metric representation. We demonstrate this important property by considering throughout
the whole paper in parallel the Lagrangian setting relative to the reference configuration
and the Eulerian geometric setting relative to the current configuration. Note that the
Eulerian setting can be attractive with regard to a numerical implementation for the
following reason. If one chooses Cartesian coordinate charts, the current metric has a
diagonal form in the Eulerian setting but is fully populated in the Lagrangian setting. The
evaluation of Eulerian algorithmic representations of constitutive equations then needs less
computational effort than the evaluation of their Lagrangian counterparts, see Sima and
Miehe (1992) and Sima (1992). The essential step towards a geometrically unified rep
resentation of elastoplasticity is to force the constitutive functions to have the identical
structure within the Lagrangian and Eulerian format. The only difference is the variables
which enter the functions. These dual variables are related via fundamental geometric
transformations between the Lagrangian and Eulerian configuration manifold and the
associated local tangent and co-tangent spaces. An outcome of this approach is that the
representations of the constitutive functions are strongly restricted due to the principle of
material frame invariance which permits only representations as isotropic tensor functions.
As a consequence, effects of anisotropic material response must be described by additional
variables, denoted here as anisotropy variables. This implies an advantageous coordinate
free representation of anisotropy properties independent of particular choices of basis
systems. In the case of initial anisotropic elastoplastic response, the anisotropy variables
are simply defined as geometrical structural tensors, or material parameters with tensor
character, with respect to the reference configuration. We refer in this context to approaches
outlined e.g. in Doyle and Ericksen (1956) and Boehler (1987), see also the references
therein. Note, in this context the general representation theory of isotropic functions as
discussed, for example, in Wang (1969,1970), Spencer (1971), Smith (1971), Betten (1982),
Boehler (1987) and references therein. In the case of induced anisotropy, the variables
develop during the elastoplastic deformation process and are governed by additional consti
tutive evolution equations.

(iv) Canonical symmetric constitutive structure. The elastic domain is assumed to be
convex with respect to the plastic force and the anisotropy variables. We exploit this
property by constructing a set of canonical evolution equations for the plastic metric and
the anisotropy variables, denoted as normality rules. Following the conceptual work of
Hill (1950), Drucker (1951), Ziegler (1963), Ziegler and Wehrli (1987) and Krawietz (1981),
we formally construct these normality rules and the associated conditions for elastoplastic
loading and unloading on the basis of a thermodynamic extremum principle. This principle,
often denoted as the principle of maximum dissipation, is an equivalent to the normality
of the evolution direction with respect to the yield surface and the convexity of the elastic
domain. The exploitation of the principle uses standard tools of convex analysis. A par
ticularly attractive feature is the simple extension of the rate-independent formulation to
the particular class of rate-dependent elastoplastic materials considered by Perzyna (1971).
This constitutive structure can formally be obtained by an approximation solution of
thermodynamic extremum principle of the rate-independent theory. The most important
property of a canonical set of constitutive equations with normality rules is the symmetry
of the elastoplastic moduli. These moduli connect the rate of stress with the rate of total
deformation. Their algorithmic counterparts playa key rule in iterative solvers for the
numerical solution of initial boundary value problems of elastoplasticity. Thus, from the
viewpoint of numerical analysis, the canonical constitutive structure is convenient because
it needs less computational effort than a non-symmetric one. Clearly, it can only be applied
if it fits the phenomenological response of the real material under consideration. The
structure of the moduli within the large-strain formulation is not trivial. To the knowledge
of the author, it is pointed out here for the first time in association with the key assumption
of a flow criterion function formulated in terms of the plastic force.

(v) Decoupled volumetric--isochoric constitutive functions. A further key feature of
the framework presented here is a geometrically exact decomposition of the constitutive
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functions into separate volumetric and isochoric contributions. This decomposition is
motivated by the observation of real material response which is often completely different
for the volumetric and isochoric deformation modes. We set up here a geometrically
consistent approach to the decomposition of the constitutive functions based on the notion
of a volumetric intermediate configuration. This notion induces modified objective rates
associated with the isochoric part of the deformation only based on modified geometric
transformations between the Lagrangian and the Eulerian manifold. To the knowledge of
the author, these geometric relationships have not been outlined in the literature in the
general terms presented here. It results in a split of the elastoplastic constitutive equations
into a volumetric box governed by scalar functions and an isochoric box governed by tensor
functions which we represent again in a Lagrangian as well as an Eulerian geometric setting.
The approach offers in particular the possibility of a restriction of anisotropy properties to
the isochoric part of the deformation.

The paper is organised as follows. In Section 2 we set up the general theory within the
canonical format mentioned above. This framework is then specified in Section 3 with
regard to the decoupled volumetric-isochoric representation. Section 4 discusses possible
definitions of elastic strain measures and the associated identifications of the plastic forces
as a function of the stresses. Section 5 is devoted to an application of the theory to isotropic
elastoplastic response. In this context, we suggest alternative representations in terms of
invariants or eigenvalues of a mixed-variant elastic strain tensor. A key result within this
context is a spectral representation of the isotropic elastoplastic constitutive equations in
terms of dual covariant and contravariant eigenvector triads. Section 6 then discusses the
modelling of initial elastic and plastic anisotropy within the framework proposed here.
Here we consider anisotropic elastoplastic response with respect to the total deformation
and, as mentioned above, a particular class of anisotropic elastoplastic response which is
restricted to the isochoric part of the deformation. The modelling of initial anisotropy is
demonstrated for the model problem of transverse isotropy. Finally, we demonstrate in
Section 7 the application of the theory to the modelling of induced anisotropy phenomena.
Here we consider as a model problem the Bauschinger effect or so-called kinematic hard
ening phenomenon and proposed a generalization of the classical Melan--Prager approach
to the large strain format.

2. A GENERAL FRAMEWORK OF LARGE-STRAIN ELASTOPLASTICITY

In this section we propose a constitutive framework of large-strain elastoplasticity in
a consistent thermodynamic setting in Lagrangian as well as Eulerian representation. The
output is a box which determines the local stress response as an initial value problem in the
sense of an internal variable formulation. As already mentioned above, the key ingredient
is the representation of all constitutive functions as isotropic tensor functions. They are
formulated in terms of a plastic metric and anisotropy variable, which describe the history
dependence and effects of initial and induced anisotropy, respectively. Within the sub
sequent setup of the constitutive framework, we first introduce all the thermodynamic
variables which are needed in the further development. Then we construct a canonical set
of the elastoplastic constitutive equations based on an exploitation of thermodynamic
principles within both the Lagrangian as well as the Eulerian geometric setting. Finally, we
prove the symmetric structure of the developed canonical framework and make some
remarks concerning a possibly non-symmetric structure.

2.]. Notation and introduction (!f thermodynamic variables
We start with the introduction of some basic geometric notation for the description

of the model of large-strain elastoplasticity under consideration. After having defined
fundamental kinematic mappings, we introduce all primary strain-like and conjugate stress
like thermodynamic variables which are needed in the subsequent development. The sub
section concludes with definitions of time rates for the Lagrangian as well as the Eulerian
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Anisotropy Variable A a
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Fig. I. Lagrangian and Eulerian variables. Primary thermodynamic variables and work-conjugate
dual variables on the Lagrangian and Eulerian configuration. The Eulerian variable (0) is connected
with its dual Lagrangian counterpart ['J by a composition with the deformation map cp and the
associated linear tangent map F and normal map F' T. That is (.)b = F- T['JbF -1 0 cp" for covariant
fields and (.)* = F['] *FT

" cp" for contravariant fields. Objective rates of Eulerian variables are
defined by .2',(.)b,=F"TC,[·]bF',cp'" and .2',.(·)*,=FiJ,[-]*FT ocp-', respectively. The given ref-

erence metric is denoted with G and has the Eulerian form c = F' TGF -I " cp - I.

geometric description. Figure I summarizes the notation and geometrical relationships
introduce here.

2.1.1. Fundamental kinematic mappings. We consider elastoplastic deformations at
large strains. Let PA c 1R3 be the reference configuration of the body of interest and

(1)

the nonlinear deformation map at time t E IR+, <p maps points X EPA of the reference
configuration PA onto points x = <p(X; t) E // of the current configuration ,Cf' c 1R3 as vis
ualized in Fig. 1. The deformation gradient F(X; t) := Vx<p(X; t) with Jacobian
I(X; t) := det [F(X; t)] > 0 maps tangent vectors T E TxPA of material curves at X onto
tangent vectors t = FTE T,Y of the deformed material curves at x. Then F·T(J'; t) maps
normal vectors N E nPA at X on material surfaces onto normal vectors n = F- TN E T';Y at
x on the deformed material surfaces. Consequently, we denote F and F- T as the tangent
map and the normal map, respectively, and write

(2)

We consider PA and Y as differentiable manifolds with local tangent spaces TxPA, TxYand
co-tangent spaces nel, T';Y at XEPA and xE,Cf', respectively. eI and Yare parameterized
in tenus of coordinate charts {XA

} and {xa
} within a neighbourhood iJIix c f!4 and iJlix c Y

of the points X and x, respectively, We refer to Doyle and Ericksen (1956), Marsden and
Hughes (1983), Sim6 and Ortiz (1985) and Le and Stumpf (1993) for an addition reading
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concerning kinematic representation in terms of general coordinates. In the subsequent
development we often use for f!4 synonyms material configuration and Lagrangian manifold
and for .ct' spatial configuration or Eulerian manifold.

2.1.2. Introduction of covariant metric tensors. Now let g(x) and G(X) denote given
covariant metric tensors on the current configuration and the reference configuration at x
and X, respectively. In what follows, we denote g as the current metric and G as the
reference metric. The corresponding geometric objects on the dual configurations are
obtained by a composition with the deformation map (1) and the associated normal map
(2):. We denote the symmetric and positive definite tensors C(X; t) and c(x; t), defined by

(3)

on the reference configuration and on the current configuration as convected current metric
and as convected reference metric, respectively. The index representation associated with
(3) relative to the coordinate charts {XA

} and {xa
} is CAB = (gah "({J)P APhBand

Cah = GABF' I A a P - I Bh " ({J - I . In the literature, C is often denoted as the right Cauchy-Green
tensor and c as the left Cauchy--Green tensor or inverse Finger tensor. Note that the current
metric is the primary thermodynamic variable which governs the local stress power and
therefore the elastic stress response. In the subsequent development we describe the history
dependence of the inelastic material response by means of additional local variables. The
evolution of these additional variables is then governed by constitutive evolution equations.
Let G"(X; t) with the initial condition GP(X; to) = G(X) at the initial time to denote the
covariant plastic metric on the Lagrangian manifold. Then the tensor field cP(x; t) on the
Eulerian manifold, defined by the composition

(4)

with the index form (~;h = G~BP- I A a P - I Bh "({J I, is called the convected plastic metric. GP
and cP are assumed to be symmetric, positive definite tensor fields for the phenomenological
description of the local plastic deformation. Note that this assumption restricts the model
of finite elastoplasticity discussed here a priori to 6-dimensional flow rules. This is in contrast
to the so-called intermediate configuration theories which include local plastic rotations.
The evolution of the plastic metric GP and cP is determined by a plastic flow rule whose
canonical structure will be discussed in the subsection below.

For the description of induced anisotropy effects, for example the Bauschinger
phenomenon or non-isotropic damage accumulation, we consider as a model problem the
generic covariant second-order tensorial anisotropy variable A(X; t) on the Lagrangian
configuration with the possible initial condition A(X; to) = G(X). A is assumed to be
symmetric and positive definite. Then the Eulerian tensor field oe(x; t), defined as

(5)

and IXah = A ABF IA aF IB h "({J I, is the convected anisotropy variable. The evolution of the
anisotropy variable A and Ot is determined by a constitutive evolution equation whose
canonical structure will be discussed below.

2.1.3. Introduction of contravariant conjugate variables. For the thermodynamic
description of large strain elastoplasticity we now introduce the thermodynamic variables
conjugate to the current metric (3)1' the plastic metric (4) and the internal variable (5)
introduced above. Let .(x; t) denote the contravariant Eulerian Kirchhoff stress tensor
work-conjugate to the current metric c introduced in (3). Then the Lagrangian field S(X; t),
defined by the composition
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(6)

with the deformation map (1) and the tangent map (2) I, is the symmetric Lagrangian-Piola
convected stress tensor on the Lagrangian manifold conjugate to the convected current
metric C in (3)1' The index representation associated with (6) is SAB = (r ah

0 <(J)r- lA
aF- IB h'

Let the Lagrangian field SP(X; t) be the thermodynamic stress-like variable conjugate to
the plastic metric G' introduction in (4), in what follows denoted as the plastic force. The
Eulerian field TP(X ; t), defined by

(7)

with the index form rpah = SPABFa Aph B 0 <(J - I is the convected plastic force work-conjugate
to the convected Eulerian plastic metric d' in (4). Finally, we introduce the anisotropy
variable H(X; t) work-conjugate to the internal variable A on the Lagrangian configuration,
denoted as the internal force. Then P(x; t), obtained by the composition

P:= FBFT
0 <{J .... I (8)

with index representation {Jah = BASPAFb
B 0 'fJ- 1 is the convected internal force work

conjugate to the convected internal variable IX introduced in (5) on the Eulerian manifold.

2.1.4. Material and spatial rates. Throughout this paper, we consider the covariant
tensors introduced in (3)-(5) as maps

1

c: TxPJ x Tx·04 IR+

[.]b .G': Tx.04 x TxPJ IR+.

A: TxPJ x Tx.04 IR+ 1

g: T,/f' x TJI' IR+

and (.)b cP: TJf x T,.'f' IR+.

IX : T,:'I' x T,.'f' IR +

(9)

The contravariant conjugate thermodynamic variables introduced in (6)-(8) are viewed as
maps

J
S : n.04 x nPJ IR

[.]* sP: n.04 x n.04 IR and

lB: n.04 x nPJ 1R

rT : n'f' x T";.'f' IR

(-) * )TP : T";Y x T";Y IR.

lP:T";Y x T";Y IR

(10)

Now let the symbols [.] and (.) introduced in the equations above denote dual Lag
rangian and Eulerian tensorial variables defined on PJ and Y, respectively. They are
connected through the geometric transformations (3)-(8) governed by the nonlinear defor
mation map (1) and the linear tangent and normal maps (2). Following standard ter
minologies of differential geometry, we denote these transformations of dual geometric
objects on the Lagrangian and Eulerian manifold as pull back and push forward trans
formations, using the symbolic notation [.] = <p*(.) and (.) = <(J*[']. Now let us denote with
0,['] the time rates of Lagrangian objects and with X.(') objective rates of the associated
Eulerian objects. We choose as objective rates the Lie derivatives of the Eulerian objects,
which are obtained from the time derivatives of the associated Lagrangian objects by a
push-forward transformation, i.e. 2t,(-):= 'fJ*{a,[<p*(')]} = 'fJ*{a,[-]}. For second-order
tensors, we obtain the relationships

(11 )
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for covariant fields and contravariant fields, respectively, see also Fig. I. Here (0) denotes
the material or total time derivative of the Eulerian field (0) and

1:=G,FF-1ocp-l (12)

is the spatial velocity gradient. For the second-order tensor under consideration, the Lie
derivative defined in (II) are denoted in the literature as Oldroyd rates. Finally observe the
particular forms of the Lie derivatives of the convected reference metric !Zvc == 0 due to
GIG == 0 and the current metric !Zvg = Vg+gl = 2 sym [gl] due to g == O.

2.2. A canonical set o{constitutive equations
We now develop a set of constitutive equations in terms of the variables introduced

above. Thereby, we first focus on the partial elastic response governed by a stored free
energy function. Then canonical evolution equations for the plastic metric and the ani
sotropy variable are constructed by exploitation of a plastic potential function, taking into
account a thermodynamical extremum principle.

2.2.1. Local elastic constitutive response functions. Let t/J denote the change in locally
stored free energy during the deformation process from the reference configuration to the
current configuration. We assume a functional dependence on the current metric, the
anisotropy variable, the plastic metric and the reference metric introduced in (3)1> (5), (4)
and (3)2' respectively. Here, we consider the particular form

I t/J = tfr(C,A;G',G,X) = tfr(g,ac;cP,c,x)·1 (13)

Thus, we assume the identical function ~ in the Lagrangian and Eulerian geometric setting,
resulting in an identical structure of the Lagrangian and Eulerian set of constitutive equa
tions as pointed out in the subsequent development. The function (13) is then strongly
restricted due to the principal of material frame invariance. It demands in its active form
invariance with respect to rigid body motions superimposed onto the current configuration.
Therefore, we consider the modifications F + := QF and F T

+ := QF- T of the local tangent
and normal map (2) where Q E S03 is an arbitrary rotation, i.e. an element of the special
orthogonal group S03 := {Q IQTQ = I and det [Q] = I}. Under this rotation, the Eulerian
variables g, ac, cP and c transform as g+:= QgQT, ac+ := QacQT, cP+:= QcPQTand c+ := QCQT.
This is a consequence of the definitions (3)" (5), (4) and (3h Thus, the principle of material
frame invariance demands

S03-invariance of all tensorial ~Iots of the free energy function ~. Recalling the assumption
(13), we conclude in particular the necessity of S03-invariance of the free energy function
with respect to the Lagrangian variables

Thus, the principle of material firame invariance restricts the free energy function of the
structure (13) to an isotropic tensor function of its tensorial arguments. According to the
representation theorems of isotropic tensor functions, see for instance Boehler (1987) and
references therein, the function (13) can depend only on the coupled invariants of its
tensorial arguments which form an irreducible functional basis. Thus, ansatz (13) has a
crucial consequence for the conceptual treatment of elastic anisotropy effects. Anisotropic
elastic response is described based on isotropic tensor functions with an extended set of
arguments, referred to in what fohows as anisotropy tensors or structural tensors. A generic
anisotropy tensor is the second-order variable A with the Eulerian counterpart ac introduced
in (5) which offers for instance the description of initial transversely anisotropic elastic
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response or orientated induced elastic anisotropy phenomena due to damage evolution.
More complicated initial anisotropic stress response of orientated damage needs possibly
the introduction of more anisotropy tensors, possibly the introduction of fourth or even
higher order anisotropy tensors. However, the conceptual approach does not differ from
that outlined in the subsequent development in terms of a single second-order tensorial
variable A. Particular representations and restrictions of the free energy function are
discussed in Sections 5-7.

The evolution of the free energy takes, based on assumption (13), the Lagrangian and
Eulerian form

a,t/! = ac~: o,c+ aG"~: a,GI' +aA~: a,A

= ag~ : ,q}'vg +aeP~ :,q}',.r!' +aa~ :,q}'va. (16)

in terms of the rates of the Lagrangian and Eulerian variables defined in Section 2.1.4
above. Thereby, the Eulerian rate form is obtained from the Lagrangian rate form by
operations of the type ac~ :arC = [Fa(FTgF)~Fl : [F-Ta,CF- 1

] = ag~: ,q}'vg. We construct
the set of constitutive equations in a way that it satisfies a priori the second axiom of
thermodynamics which postulates a positive entropy production. We use here as a local form
of the second axiom the so-called Clausius-Planck inequality for the internal dissipation, see
e.g. Truesdell and Noll (1965) p. 295, which degenerates in the isothermal case under
consideration to the form

(17)

in the Lagrangian and the Eulerian geometric setting, respectively. Sand t are the stress
fields introduced in (6). The well-known inequality says that the local stress power
S: ~ a,c = t : ~ ,q}'vg is greater than or equal to the evolution a,t/! of the local energy storage,
where the equality defines hyperelastic material response. The insertion of the evolution
(16) into (17) yields

fill' = [S-2oc~]:~a,c-aGJ'~:a,GI'-aA~:a,A

(18)

A standard argumentation, following Coleman and Gurtin (1967) and Lubliner (1990), is
as follows. A local elastoplastic process can be, as a special case, purely elastic in an
arbitrary time interval of the deformation history. Within this interval, the evolution of the
plastic metric and the evolution of the anisotropy variable is assumed to be zero, i.e.
orGI' = a,A = ,q}'vr!' = ,q}'va. = O. Furthermore, the inequality (I8) degenerates then to an
equality which has to be satisfied for arbitrary rates ~ a,c and ~ irvg of the local deformation.
As a consequence of these assumptions, the brackets in (18) must vanish for all times,
yielding the local hyperelastic constitutive functions for the stresses Sand t in Table I.

Table 1. A canonical constitutive set of anisotropic elastoplasticity

Lagrangian setting Eulerian setting
---------------------------------- ----
Free energy

Stresses
Plastic force
Internal force

Yieldfunction
Flow rule
Evolution
Loading
[Viscoplastic

t/J = ifJ(C.A;G',G.X)

~,= 2(\~ ,
S' ,= -,oG,t/J
B,= -cAifJ

1J = 4>(S", B; G', G, X)
cP' = AC",tP
G,A = AC.4>
A~ 0; 4> ,,;; 0; 1.4> = 0
I. ,=(l/t1)p'(1J+)

t/J = ifJ(g,CIt; c",c, x)

t = 2caifJ
rf',= -c,,~

fJ'= -c.ifJ

1J = 4>(rf',fJ;c",c,x)
:?l,c" = ))J"tP
:?l,CIt = ;'cp4>
i. ~ 0; 4> ,,;; 0 ; 1.4> = 0
A,= (l/J1)p'(1J +)]
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Taking into account this result, the Clausius-Planck inequality (18) takes the reduced
form

£»P = sP: a,GI' +B: a,A = ~P: :ZvcJ' + p: :Zv(J, ~ 0 (19)

where we have introduced per definition the variables sP and ~, denoted as plastic forces,
and Band p, denoted as internal forces, with the identification in Table 1. In what follows,
we refer to fhp as the dissipation function. It is an inner product of thermodynamic
forces and fluxes. The dissipation function plays a fundamental role in the subsequent
development.

2.2.2. Local plastic constitutive response functions. What remains is the determination
of the evolution equations for the internal metric and the internal variable. In what follows
we derive the canonical form of these evolution equations which result in a symmetric form
of the elastoplastic tangent moduli as proven in Section 2.3. These canonical evolution
equations can be interpreted as normality rules with respect to a convex plastic potential
function.

As a main characteristic of elastoplastic and viscoelastoplastic material response, we
consider an elastic domain in the stress space. One of the key aspects of this work is the
formulation of the domain in terms of the thermodynamic forces which drive the plastic
dissipation in the reduced dissipation inequality (19). Thus, we assume an elastic domain

(20)

in the space of the Lagrangian thermodynamic forces (sP, B) and alternatively

(21)

in the space of the Eulerian thermodynamic forces (rP, P). Here ¢ is a yield function, which
is assumed to depend on the thermodynamic forces, the plastic metric and possibly the
reference metric. In analogy to the constitutive ansatz (13) of the free energy we assume

I¢ = ¢(sP,B;GI',G,X) = ¢(~P,P;cP,c,x) I (22)

the identical function in the Lagrangian and the Eulerian geometric setting, resulting in an
identical structure of the evolution equations in the Lagrangian and Eulerian format. Then
the yield function (22) is strongly restricted due to the principle of material frame invariance.
Considering again an arbitrary rotation Q ESO, superimposed onto the current configur
ation, inducing the modifications F + := QF and F-- T:= QF- T of the local tangent and
normal map (2), the Eulerian variables ~P, P, cP and c transform as ~P+:= QrPQT,
P+ := QPQT, cP+ := QcPQT and c+:= QCQT. This is a consequence of the definitions (7),
(8), (4) and (3h, Thus, the principal of material frame invariance demands

Thus, ¢ is an isotropic tensor function and the ansatz (22) induces in particular full S03
invariance of the free energy function with respect to the Lagrangian variables, i.e.

According to the representation theorems of isotropic tensor functions. the function (22)
can depend only on the coupled invariants of its tensorial arguments which form an
irreducible functional basis. Anisotropic plastic response is described based on isotropic
tensor functions with an extended set ofarguments, referred to in what follows as anisotropy
tensors or structural tensors. A generic anisotropy tensor is the second-order variable B
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with the Eulerian counterpart fJ introduced in (8) which offers for instance the description
of initial transversely plastic anisotropic response or induced anisotropy phenomena like
Bauschinger's effect. More complicated initial anisotropic stress response of orientated
damage needs the introduction of more anisotropy tensors, eventually the introduction of
fourth or even higher order anisotropy tensors. However, the conceptual approach does
not differ from that outlined in the subsequent development in terms of the second-order
tensorial variable B. Particular representations and restrictions of the yield function are
discussed in Sections 5-7.

In order to postulate canonical evolution equations, we consider the yield function
(22) as a flow hypersurface in the space of the thermodynamic forces, evaluated with the
plastic metric and the reference metric. The canonical evolution equations are then derived
from the argument.

f2P - fij)P* := [Si' - 81'*1 : erG' + [B - B*l : i\A

= [-rP --rP*] : .?l""cP + [fJ - fJ*] :.?l"vf.X. ~ 0 (25)

for all admissible variations (81'*, B*) E Ie- of the Lagrangian thermodynamic forces and
(-rP*, fJ*) E lEE of the Eulerian thermodynamic forces. A geometric interpretation of this
inequality is given in Fig. 2. Applied to the true stresses, this principle is known in plasticity
theory as the so-called principle of maximum plastic dissipation, see for example Hill
(1950), Drucker (1951), Mandel (1972), Lubliner (1990), Sim6 and Miehe (1992). We use
it here in a more general context by application to the full vectors of thermodynamic forces.
This is in line with conceptual frameworks outline in Ziegler (1963), Krawietz (1981) and
Ziegler and Wehrli (1987). The principle is equivalent to the convexity of the yield function
with respect to the thermodynamic forces and the normality of the evolution equations for
the thermodynamic forces with respect to the flow hypersurface ~ = 0 in the space of the
thermodynamic forces.

The evolution equations can be formally derived from a saddle point problem based
on the Lagrange function

.:£ = -f2P+A¢ -> stat. (26)

defined on the Lagrangian manifold at XE (J4 in terms of the Lagrangian variables as well
as on the Eulerian manifold at x E ,Cf' in terms of the Eulerian variables, according to the
representation of (19) and (22). This function transforms the constrained optimization
problem (25) into an unconstrained saddle point problem. The solution to the problem

E:= {.1" E R"I¢(.1",.):S O}

8E:= {F E R"I¢(F,.) = O}

Fig. 2. Thermodynamic extremal principle. Let IE be a convex elastic domain in the space of the
thermodynamic forces .'7, characterized by a hypersurface 4>(.'7;.) = O. The principle
:F' <&:.;:. .'7* •J'I/.<;;* E IE forces the thermodyn~mic flux vector J' to be normal to the hypers!!rface

!/J(ff ;.) = O. Then for smooth functions !/J the flux 8 is proportional to the gradient a"rj:J.
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(26) is given by the Kuhn-Tucker equations, see for example the standard literature of
nonlinear convex analysis. The gradients

(27)

yield the canonical evolution equations for the plastic metric and the anisotropy variable
in the Lagrangian and Eulerian setting, respectively, as outlined in Table 1. They are
completed by the Kuhn-Tucker-type loading-unloading conditions

A~ 0 ; ¢ ~ 0 ; A¢ = 0 (28)

which determine the plastic parameter A.
The classical form of Perzyna-type viscoelastoplasticity, see e.g. Perzyna (1971), can

be formally derived if the constrained optimization problem (25) is solved approximately
based on a penalty approach. We therefore introduce as an alternative to the Lagrange
function (26) the penalty functional

_ _ I .
.?J = -:»P + -jJ(¢+) --> stat.

11
(29)

defined on the Lagrangian manifold at X E:JI in terms of the Lagrangian variables as well
as on the Eulerian manifold at XE Y in terms of the Eulerian variables, according to the
representation of (19) and (22). The penalty parameter (1/I1)E(O,OO) is interpreted as a
scalar material parameter denoted in what follows as the viscosity. The constitutive function
jJ: IR+ --> IR+ is a monotonic increasing C' penalty function which satisfies the condition
jJ(O) = 0. Furthermore, we denote

for ¢ ~ 0,

for ¢ > 0
(30)

as the viscoplastic loading function. The gradients of the penalty function

(31)

yield the canonical evolution equations for the plastic metric and the internal variable in
the Lagrangian and Eulerian setting, respectively, as pointed out in Table 1. The only
difference to the case of plasticity is that the plastic parameter is now per definition
determined by the constitutive expression

(32)

in terms of the viscosity 1/11 and the constitutive function jJ of the viscoplastic loading ¢ + .

2.3. Elastoplastic tangent moduli
We consider now rate equations for the Lagrangian and Eulerian stresses, respectively,

in the form

~ S - l0ep . , ;'l C d·Pi' _ ep. 1 Pi'
(;, -IG 'lU' an .zv'f-iC ·z.zvg. (33)

The goal of this subsection is the determination of the fourth-order tensors CP and iC ep in
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(33), to which we refer in what follows as the Lagrangian and Eulerian elastoplastic tangent
moduli or generalized Prandtl-Reuss tensors. They connect the rate of stress with the
rate of total deformation. Therefore, consider first the rate equations of the stresses and
thermodynamic forces introduced in Table 1

OtS = 40~~~ /~tC-.l.[20~GP~ ~ ~sr¢~20:A~,:.OU¢!I
a,S" = 20GPc l/J '"2 OtC- .l.[oGPGPl/J .osr4> +OGPAl/J . ou4>]

_ 2 '.1 2 '. ' 2 '. 'o,B - 20ACl/J '"2 OtC - .l.[OAGPl/J . osr4> +aAAl/J . ou4>l

within the Lagrangian setting and

, 1 ,'"

!Z",~~40~'" ~ i ~:g-~[20~"'. 0'¢.+ 20~'" •.
0
,¢]I

:!L.'t - 20CPgl/J. 2 :!L.g .l.[0ePePl/J. 0..,4> + oeP«l/J .0/J4>]

:!L.fJ = 20;g~ : ~ :!L"g -J.[o~~ :O,,¢ +o;"~: o/J¢]

(34)

(35)

within the Eulerian setting, Here we have inserted the canonical evolution equations for
the plastic metric and the anisotropy variable. In the case of rate-independent plasticity,
the plastic parameter A is given by the loading condition (28). Assuming a plastic loading
process with .l. > 0, the plastic parameter can be determined from the so-called consistency
condition Ot¢ = 0, which takes-based on the ansatz (22)-the form

0,4> == osr¢ :o,S" +ou¢ :o,B +OGl'¢ :o,G'

== o,,¢ : :!L;r:P +o,¢ : :!L.fJ+oeP¢ ::!L.C' =° (36)

in the Lagrangian and Eulerian form. Then the insertion of the rates of the thermodynamic
forces (34) and (35) into (36) determines the plastic parameter in the form

with the denominator

D:= 0S"¢: [o~'pGP~: osr¢ +ObA~ :ou¢]

ou¢: [olGP~: osr¢+olA~: ou~] -oGP¢: osr¢

= o,P¢ : [o.}eP~ :o,P¢ +o.}«~ :0/J¢1

o/J¢ : [o;eP~ :OTP¢+o;«~ :o/J¢] - oeP¢ :o"¢'

(37)

(38)

The insertion of (37) into (34)1 and (35)1 finally gives the identification of the elastoplastic
tangent moduli

"2',' 2'® [Osr4>: 20G'cl/J +(}u4>: 20Ac l/J1

,1 ' , "
cep = 40;gl/J - D[20;ePl/J: 0,,4> +20;«l/J: 0/J4>1

® [(},,¢ : 2(}.}g~ +o/J¢ :2a;g~1 (39)
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in (33) in the Lagrangian and Eulerian geometric setting. They are characterized by an
elastic part and a plastic softening part. Clearly, the latter one is only apparent in the case
of plastic loading with A> O.

The symmetry of the elastoplastic tangent moduli (39) for the canonical set of consti
tutive equations summarized in Table I is a key result of the work presented here. Note
that this property has been achieved when formulating the flow criterion function (22),
which serves in the canonical framework as a plastic potential, in terms of the plastic forces
sP or "CP in connection with the plastic metric GP or cP, respectively. The relationships of this
type of flow criterion function to functions formulated in terms of the true stresses S or "C
in context with the current metric C or g is commented on in Section 4. We note that
canonical symmetric forms of eiastoplastic tangent moduli in multiplicative elastoplasticity
have been derived by Miehe (l994a).

2.4. Modificationsfor non-associativeflow response
In situations where the canonical normal directions of the evolution equations sum

marized in Table I do not fit the real material response under consideration, we modify the
constitutive set as follows. Firstly, we consider the third fundamental constitutive function
X, referred to in what follows as the plastic potential. It is assumed to depend on the same
variable as the flow criterion function (22), i.e.

x= i(sP,B;GP,G,X) = X("CP,P;cP,c,x). (40)

Then, as a consequence of the material of frame invariance, this function must be an
isotropic tensor function of its tensorial arguments. Based on this function, we postulate
evolution equations for the plastic metric and the internal variable

, GP . '" '} 01" P 'a-}(J, = 1.(jsPX ;;z.C = A 'r-X
and

a,A = AaBX :!r.a. = Aa,d
(41)

which replace the normality rules in Table I. The plastic loading conditions remain
unchanged. Based on these assumptions, the elastoplastic moduli then take the non-sym
metric form

t'p "'2 A I 2 A. .... 2 "'. ....
(: = 4occ l/J - D[2aw 4 .asPX +2ih l/J .ad]

® [aSf,¢ :2obc~+OB¢ :2a~c~]

- I - _
ep _ 4::)2 ,I, _ ~ [2;')2 ,I,· '" • 1'2.1,. 0 -]iC - egg'/' D [gel''/'' (),pX + Cg.,/" BX

in the Lagrangian and the Eulerian geometric setting in terms of the denominator

D := OsP¢ : [O&GP~ : OSf'X +0&A ~ : OBX]

OB¢: [O~GI'~ : OsPX + O~A~: OBX] - OGP¢: 0sPX

= O"'¢ : [O~cp~ : O,pX +O~.~ : Of/X]

D(I¢: [a;cp~ : i).pX + o;.~: ad] - ocP¢: a,px'

(42)

(43)
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Most materials exhibit a completely different volumetric and isochoric response. A
typical example is the case of metal plasticity where the plastic flow is often assumed to be
restricted to the isochoric part of the deformation while the volumetric response is assumed
to be elastic. Thus, it often makes sense to decompose a priori the constitutive response
functions into separate volumetric and isochoric contributions. As a consequence, we
discuss in this section a geometrically exact decomposition of the set of constitutive ela
stoplastic equations summarized in Table 1 into decoupled volumetric and isochoric parts.
Therefore, we first point out the geometry of a multiplicative split of the tangent map into
spherical and unimodular parts. We then set up constitutive sets for decoupled volumetric
and isochoric elastoplasticity, respectively, within both the Lagrangian as well as the
Eulerian geometric setting.

3.1. Geometry ot'the volumetric-isochoric decomposition
The geometrical basis for decoupled volumetric-isochoric constitutive modelling is the

multiplicative decomposition of the tangent map (2) I

(44)

into a spherical 1'/3) and a unimodular part F:= r(1:3)F with the index representations
J'\Y B and P"A,=J(I/3I Fa A, respectively. The Jacobian J:=det[F(X;t)] governs the
volumetric part and F(X; t) the isochoric part of the deformation. FE SL3 is an element of
the special linear group SL, [T Idel [T] = I} of unimodular tensors with unit deter
minant. The decomposition (44) defines locally at X E.'/$ a new vector space Tx.'/$ with dual
space Tt,'/$ associated with the Lagrangian manifold Pl. We refer to this vector space in
what follows as the volumetric intermediate configuration, This geometric viewpoint is
visualised in Fig. 3. Then the tangent and normal maps (2) can be split up in a successive
format into a part

(45)

associated with the volumetric part of the deformation and a part

(46)

associated with the isochoric part of the deformation.
The volumetric maps (45) transform the Lagrangian variables introduced in (3)-(8)

according to

TxB

Fig. 3. Volumetric intermediate configuration. The multiplicative decomposition of the tangent map
F = J"'F into the unimodular part F with det IF] = I and the spherical part Jill} with .I ,= det IF]

defines a fictive volumetric intermediate configuration.
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C:= j_(2...,.'.)C ]
G' := J-(23)Q'

A:= j(2l)A

and
S:=pns 1

SF := j2i3SJ'

B:= j 2i3 B

(47)

to the covariant variables C(X; t), G'(X; t), A(X; t) and the contravariant variables S(X; t),
SF(X; t), A(X; t) with respect to the volumetric intermediate configuration, see Fig. 4. These
variables are then transformed by the isochoric maps (46) and the nonlinear deformation
map (I) to the Eulerian configuration via

g = F- TCF- I (p I I

P F---T.G-PF---1 Iic = ,j (p

IX = F TAF-· I (j ((J I

and

r = FSFT
0 ((J I

r P = FSFF'T 0 ((J I (48)

The transformations (48) can be viewed as modified pull-back and push-forward operations
governed by the nonlinear deformation map (I) and the modified linear tangent and normal
maps (46). Denoting with P1 a geometric object with respect to the volumetric intermediate
configuration, we introduce the symbolic notation P') = ~*(o) and (0) = 0*['] which extend
the notation introduced in (9) and (10). In connection with these mappings, we also
introduce the modified objective rate ~k):= 0*{o/[0*(°)j} = 0*{o/[1]} of spatial objects
(0). This rate assumes for second-order tensors the form

- - p -C I G , A -- Primary Variables

- - p -8'80 ,8 I B - Conjugate Variables

TxB I

Primary Variables:
Current Metric
Plastic Metric
Anisotropy Variable

Conjugate Variables:
Stress
Plastic Force
Anisotropy Variable

(J'
C
G'
A
(Jtt
S'80sP
iJ (3

Fig. 4. Variables associated with isochoric deformation. Primary thermodynamic variables and
work-conjugate dual variables on the volumetric intermediate configuration and the Eulerian con
figuration associated with the isochoric part of the deformation_ The Eulerian variable (.) is
connected with its dual Lagrangian counterpart [1 by composition with the deformation map cp
and the modified linear tangent map F and normal map F- r That is (.)b = F T[,'1bF-' cp--' for
covariant fields and (.)", = F[,'1*F/ ,p' for contravariant fields. Objective rates of Eulerian vari
ables are defined by .1',(')" ,= F Ta,["l"F I , cp I and 5,(-) ~ ,= Fo,["] 'ifF! cp I, respectively. The
reference metric of the volumetric intermediate configuration is denoted with G and has the Eulerian

Corm c = F !Gf' ., cp I.
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_:!l'v(.)b =~~)b+~T(.)b+Obl_}

:?t'v(')'" = (.)# -1(')# (-)#JT
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(49)

for covariant fields and contravariant fields, see also Fig. 4. Here Jis the part of the spatial
velocity gradient associated with the isochoric part of the deformation and appears in the
additive split

(50)

of the velocity gradient (12) into spherical and deviatoric parts.

3.2. Decoupling olthe constitutive response
The basis for the decomposition of the constitutive response functions is an assumed

split of the free energy function (13) into decoupled volumetric and isochoric contributions

(51 )

The functional dependencies of the functions ~VOI and ~iso are investigated in the two
subsections below. The split (51) is consistent with an additive decomposition of the stresses
into spherical and deviatoric contributions

(52)

Here. P is the volumetric stress contribution, i.e. the negative pressure. The isochoric
contribution to the stresses must be traceless with respect to the current metric, i.e. S"o:

C = 0 and 'riso : g = O. Thus, Siso and 'riso are deviators with respect to the current metric

(53)

We use the notation deve [:-:1 and devg(') for deviator operators with respect to the metric C
and g, respectively. They have the typical structure devg(·)b :=(.)b -~ [Ob : g-l]g and
devg(')* :=(.)b _~ [(.)b: g]g- I when applied to covariant and contravariant second-order
tensors.

The insertion of the split (52) into the Clausius-Planck inequality (17) results, in
connection with the assumption (51), in an additive decomposition of the dissipation into
volumetric and isochoric contributions

(54)

Because both parts of the deformation are a priori assumed to be decoupled and therefore,
independent, each contribution to the dissipation must be positive. This gives the ther
modynamic restrictions

for the volumetric part of the deformation and

GAP ._ s- . I ,j¥ C- ~.j', - . I vI" :l .I, >-: 0
.;;z;!iso 0- iso·"2 ,;.L v - O,"Piso - 'tiso '"2.;L. vg - (/t'f'iso v

(55)

(56)

for the isochoric part of the dissipation in a geometric setting relative to the intermediate
configuration in terms of the rate :!£vC:= J (2;3)O,C and relative to the current configuration.
In the subsequent development we exploit both mechanisms separately.
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Table 2. Constitutive set of volumetric elastoplasticity

Free enerqr
Stresses
Plastic force
Internal force

flo1\' criterion

Flow rule
Evolution
Loading
[Viscoplastic

if;,u' = ~,n,(J, A; P, Xl
p = JaJ~""
pI' :=- i':.1,,0\()]

B,= -'<'A0""

,p,n' = (~,,,,(pr, B; JI', Xl
D,J" = lI<'p, 4;,.0'
a,A = II<'H4J,,,
II ~ 0: 1"" 0( 0: 111"" = 0
11,=(1 iry",)/i:",(,p,:,,)]

(57)

3.3, Decoupled volumetric constitutive response
The volumetric response is per definition isotropic and governed by the Jacobian J in

(44). We take into account possibly elastoplastic volumetric behavior and introduce the
plastic variable .P'(X; t) and the isotropic hardening variable A(X: t) with some initial
conditions, for example .P'(X; trJ = I and A(X; to) = O. Then

I t/J vol = l~yoM, A ; jP. X)]

is an ansatz for the volumetric free energy in (51). Insertion of its evolution into the
dissipation inequality (55) then yields

(58)

An argumentation similar to that in Section 2,2.1 yields the constitutive functions for the
volumetric stress in Table 2 and leaves the reduced dissipation function

(59)

with the volumetric plastic force PP(X; t) and internal force B(X; t) defined in Table 1. We
consider an elastic domain IEvol := {(PP, B) E IR x IR I ¢vOI(PP, B; P, X) ~ O} in the space of the
volumetric thermodynamic forces governed by the volumetric yield criterion function

I ¢vol = (~vol(Pp.B;jP,X)·1 (60)

The canonical structure of the evolution equations for the volumetric plastic deformation
and the volumetric internal variable follows from the argument

(61 )

for all admissible variations (PP*, B*) E IE vol of the volumetric thermodynamic forces. A
procedure similar to that in Section 2.2.2 yields the evolution equations in Table 2 including
the loading-unloading conditions for the volumetric plastic parameter II.

3.4. Decoupled isochoric constitutive response
Let 0;so denote the change in locally stored free energy during the isochoric part of

the deformation process from the volumetric intermediate configuration to the current
configuration. We assume a functional dependence on the current metric. the anisotropy
variable, the plastic metric and the reference metric of the volumetric intermediate con
figuration. Consider the particular form

(62)
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where we have assumed similar to (13) an identical function ~ in the setting relative to the
volumetric intermediate configuration and the Eulerian geometric setting. Then the prin
ciple of material frame invariance restricts ~iSO to an isotropic tensor function with

(63)

and

(64)

for all rotations Q E 503, see also the discussion in Section 2.2.1. Insertion of the evolution
of (62) into the dissipation inequality (56) yields

(65)

An argument similar to that in Section 2.2.1 then gives the constitutive expressions for the
stresses in Table 3. Introducing per definition the plastic force Sr and internal force B in
Table 3, the reduced dissipation inequality associated with the isochoric part of the defor
mation takes the form

(66)

Observe carefully that we have formulated the function in terms of rates related to the
isochoric part of the deformation only, i.e. governed by the isochoric maps (46). We
consider elastic domains IF;;,,:= {(Sr, B)E ~5 x ~5 I¢lso(Sr,B; &', G, X) ~ O} and
IF~() := {(rP , fl) E~' X ~5 I ¢lSO (r, fl ; cP,C, x) ~ O} in the space of the isochoric thermodynamic
forces governed by the isochoric yield criterion function

(67)

assuming the identical function ~ in the setting relative to the volumetric intermediate
configuration and the Eulerian geometric setting in analogy to (22). Then the principle of
material frame invariance restricts the admissible functional structure (62) to an isotropic
tensor function with

(68)

and

Table 3. Constitutive set of isochoric anisotropic elastoplasticity

Free energr
Stresses
Plastic force
Internal force

Yield/llllerion
Flow rule
Evolution
Loading
[Viscoplastic

Lagrangian setting

VI"" = ~",,(~,.:\; GP G. Xl
S,,,, = devt [2';{1~",,]

5" .=" ('",·0""
B,= .- ("'~'"

,I)i'o = 1)i,o(5".iL GI', G, Xl
D,GfJ ::;;: V()~l(~iW

a,,\' = \'ali(~""
\' ;?o 0; ,,:; 0; V;Pi,,, = 0
\' .= (1 /'b,)j,:w(q,,;;,l

Eulerian setting

ljJi,o = JI",,(g,Of;Ci',C.x)

Ti", = dev. [2;".,~,wI
t":= --a<l~isO

p.= -';";1""

</)"0 = ~i,o(TI',P ;c",c,x)
.ii',.c? = VDT!'¢iso

Y"Of = \'(;~~""
v ;?o 0; ¢,,,, ,,:; 0; V;Pi", = 0
V .= (1 /'J,,,,)P:,,, (tPi;c II
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for all rotations Q E: S03' The canonical form of the evolution equation for the plastic
deformation and the internal variable associated with the isochoric part of the deformation
follows from the argument

= [rl' -r"*] : ~vc') + [fJ - fJ*] :~va. ~ 0 (70)

for all admissible vanatiOns (Sti*, B*) E [(;0 and (r"*, fJ*) E IEtL, of the isochoric ther
modynamic forces. This yields the evolution equations in Table 3 including the loading
unloading conditions for the isochoric plastic parameter v.

4. ELASTIC STRAINS AND DRIVING STRESSES

The framework of elastoplasticity outlined in the two Sections above is still very
general. Recall that the free energy function (13) is formulated in terms of the current
metric and the plastic metric in a completely general context. This covers a wide range of
approaches for the constitutive description of the local elastic response of an elastoplastic
solid. In this Section we constrict this general framework by considering some particular
definitions of elastic strain tensors. They constitute a priori a relationship between the
current metric and the plastic metric which is assumed to enter the free energy function.
Recall furthermore, that the yield criterion function (22), which serves within the canonical
framework as a plastic potential for the plastic increments, has been formulated in terms
of the plastic force and the plastic metric. This provides several possibilities for the for
mulation of the local plastic response. We therefore, constrict the possible settings to some
particular applications by the introduction of driving stress tensors. These stress tensors
constitute a priori a relationship between the plastic forces and the plastic metric which is
assumed to enter the yield criterion function.

4. I. Particular formulations of elastic strain tensors
Consider the particular form of the isotropic free energy function (13)

t/J = ~(E: G, X) = ~(e; c, x) (71)

where the tensor fields E(X; t) on :Ja and e(x: t) on //' denote Lagrangian and Eulerian
elastic strain tensors, respectively. Three examples for the definition of these tensors are

E,:=C-GI' e l := g-c"

(72)

E 3 := CGI' ] e) :=gCI'-1

The first approach relates the current metric to the plastic metric in an additive format
similar to the geometric linear theory of elastoplasticity. The further two definitions relate
both tensors in a multiplicative format. The a priori definitions (72) of particular com
binations of the current metric and the plastic metric induce vice verse relationships between
their conjugate thermodynamic variables. In particular, the three definitions (72) induce
the representations of the plastic forces
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S'; := ~ S )

~ :=. sym [0' I CSj

~:=10'-ICS
. 2

(73)

This result follows in a straightforward manner by exploitation of the constitutive function
for the plastic forces in Table 1 where the last formulation is restricted to isotropic response
and has been obtained only by exploitation of commutative properties of isotropic tensor
functions. In the first approach, the plastic force is simply proportional to the stress as in the
geometric linear theory. The second formulation defines the plastic force in a multiplicative
format as the symmetric part of the mixed-variant stress CS and g't", respectively. Note
that these mixed-variant stresses arise naturally as the thermodynamic forces of nine
dimensional plasticity based on the multiplicative decomposition of the tangent map
F = FeFP into elastic and plastic parts, see e.g, Mandel (1972), Le and Stumpf (993), Miehe
(I 994a, 1996a), among others. Here FP is a possibly non-symmetric second-order tensor,
which includes, according to its polar decomposition FP = RPUP a possible local plastic
rotation RP ES03' However, within the formulation of six-dimensional plasticity proposed
here, the mixed-variant stresses CS and g't" are symmetrized by raising the first index with
the plastic metric. Thus, the second approach in (72h is consistent with a formulation of
multiplicative elastoplasticity with a priori assumption F = Feup, i.e. postulating RP = 1
and identifying the plastic metric GP = UP with the plastic stretch UP Esymj , see e.g, Haupt
(1985) and Lubliner (1990) for a discussion of the restrictions of this approach. In view to
a further extended discussion we refer in this context to the works Schieck and Stumpf
(1993,1995), where a unique decomposition F = RU''U'' without the assumptionR" = 1 is
proposed. In the formulation proposed here, (72h defines the elastic response with respect
to a fictive plastic intermediate configuration which is defined locally at X E:1J by splitting
up the tangent map (2)1 into the plastic stretch GP = UP and the part Fe, where the latter
describes the elastic stretch and the local rigid body rotations, The third approach in (72)3
can be viewed as a short cut convenient representation of the second approach valid only
in the isotropic case where anisotropy variables are not apparent.

Both formulations have a very important property with regard to the description of
isochoric elastoplastic response as outline in Section 3. In this case, the stresses Sand 't" are
deviators with respect to the current metric C and g, respectively, see Table 3, Then a few
algebraic manipulations show that the expressions (73)2 and (73h transform the deviators
with respect to the current metric to deviators with respect to the plastic metric, Thus, if
the stresses are deviatoric with respect to the current metric, then the plastic forces are also
deviatoric but with respect to the plastic metric. This property is crucial with regard to the
modelling ofisochoric flow response for plasticity models formulated in terms of the stresses
and the current metric considered below.

TxB

Fig. 5. A fictive plastic intermediate configuration. The tangent map F: Tx:J6 -+ T,,'/ is split up
F = F'GP = (RU")GP into plastic stretch, elastic stretch and local rotation. Then the plastic stretch

GP defines locally at X E.ae a fictive plastic intermediate configuration.
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4.2. Particular formulations ofdriving stress tensors
The next important point is the formulation of the yield criterion function (22) which

also serves within the canonical approach as the plastic potential for the constitutive rate
equations. Similar to the consideration outlined above we discuss here model problems of
the particular form

¢ = ¢(1::G, X) = ¢((I;e,x) (74)

for the case of ideal plasticity. We refer to the tensor fields 1:(X; t) on .'!J and (I(x; t) on Y as
the Lagrangian and Eulerian driving stress tensors, which drive the local plastic deformation
within the elastoplastic solid. We consider here three different definitions

1: 1 :=28" = S 1
1:2 := GPS"G" = sym [CSGP] and

1:3 := 2GPS!' CS J

(II := 2r!' = r

(12 := cPrPcP = sym [greP]

(13 := 2efr!' = gr

(75)

which characterize different plastic flow responses.
Note that we have inserted the relationships (73) for the plastic forces. Thus, we relate,

although not in any cases necessary, the three choices of the driving stresses (75) to the
three choices (72) of the elastic strains. The first approach simply says that the driving
stress is identical with the plastic force. This constitutes a plasticity model based on flow
criterion functions formulated in terms of the stresses and the reference metric of the
Lagrangian configuration. This is in many cases not acceptable where one wants to for
mulate the yield criterion in terms of the stresses and the current metric. Considering (75h3
one realizes that the second and third approach does exactly this, at least for the case of
isotropic response. The plastic driving stress of the third approach is the mixed-variant
stress CS and gr which has also been used in multiplicative elastoplasticity, as already
mentioned above. However, we have a fundamental difference to nine-dimensional multi
plicative elastoplasticity in the case of anisotropic response where these tensors are sym
metrized with respect to the plastic metric, see (73)z. As mentioned above, in the case of
isochoric plasticity the plastic forces (73h3 are deviators with respect to the plastic metric.
As a consequence, the flow rules in Table 3 preserve exactly the plastic volume in this
situation. That means the plastic metric Gl E S L 3 and &' E SL3 are elements of the special
linear group SL3 with unit determinant, i.e.

det [G'] = I and det [e!'] = I (76)

for all times of the isochoric deformation process. This property is often referred to as the
plastic incompressibility constraint.

In the following Sections we consider particular formulations for isotropic and aniso
tropic elastoplastic response. Therefore, we restrict the consideration to plasticity models
with yield criterion functions formulated in terms of the stresses and the current metric.
For the description of isotropic response we consider the third approach to elastic strain
tensors and plastic driving forces as the most convenient one. For the description of
anisotropic response in terms of anisotropy tensors we choose the second approach to
elastic strains and plastic driving stresses discussed here.

5. APPLICATION TO ISOTROPIC ELASTOPLASTIC RESPONSE

We investigate now the specification of the constitutive equations proposed in Section
2 to the case of isotropic elastoplasticity where anisotropy tensors of the type (5) and (8)
are not present. The particular model considered here is based on the definitions (72h of
elastic strains and (75h of driving stresses and covers therefore, a model of elastoplasticity
formulated in terms of the stresses and the current metric. We set up first a formulation in



A constitutive frame of elastoplasticity at large strains 3881

terms of invariants of the current metric and the plastic force and consider then a for
mulation in terms of elastic principal stretches and principal stresses.

5.1, Isotropic elastoplasticilY in terms 01' invariants
For isotropic elastoplastic response we assume a dependence of the free energy on the

invariants {I;} i~ 1,0 of the current metric and a generic scalar variable A which describes for
instance, isotropic hardening phenomena or isotropic damage effects. Thus, we consider
the particular form

(77)

of (13). The invariants {n; . I., of the current metric are evaluated with respect to the plastic
metric, which is assumed to play the role of a reference metric for the partial elastic response.
Within this context we introduce the ground invariants

11 := tr[E]

11 := tr [E 2 ]/2

/1 := tr [E']/3

II := tr [e] ]

or 12.:= tr [e2l.!2
I, := tr [e']!3

(78)

in terms of the Lagrangian and Eulerian mixed-variant elastic strain tensors

E CGP I and e := gcP I (79)

which have already been introduced in (72h The covariant· {;ontravariant tensor fields
E(X;t) and e(x;t) have been denoted in Lehmann (1972) and Miehe (l994c) as metric
transformation tensors. Taking into account the derivatives 0'1' tr [T] = 1, aT tr [T2]/2 = TT
and aT tr [TO]!3 = TT', we evaluate the constitutive functions in Table I and get the
expressions

for the stresses,

1

S =, t 2t/;.;C .IEi and
1.",,1

1

r = I2t/;,gle i

i~" I

(80)

sp:= ~ GJ' I CS and rP := icp " I gr

for the plastic forces and

B:= -t/;A

(81 )

(82)

for the conjugate internal variable. Here we have used the notation t/; ;:= ()[~ and ~ A := aA~
• I '

for the derivatives of the free energy by the invariants and the internal variable. Note that
the introduction of the variables (79) for the description of the elastic response induce the
relationships (81) between the plastic forces and the stresses, see also (73h This is of great
importance with regard to the identification of the yield criterion function, which has been
formulated within the canonical framework summarized in Table I in terms of the plastic
forces. Here we assume in analogy to (77) a dependence on the invariants is,} 1,1 of the
plastic forces and the generic conjugate internal variable B defined in (82). Thus,

(83)

is the particular form of (22) which is now under consideration. The invariants IS,};~ 1.0 of
the plastic force are evaluated with respect to the plastic metric. Therefore, we introduce
the ground-invariants
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5] := tr [1:] I 5] := tr [0'] I
5_.? := tr [1:2]/2 or 5 2 := tr [0'2]./2

5, := tr [1:)]/3 53 := tr [0')]/3

(84)

in terms of the Lagrangian and Eulerian mixed-variant driving stress tensors

1::= 2GPSJ' = CS and 0' := 2c"rP= gr (85)

which are due to (81) related to the mixed-variant stresses CS and gr in the Lagrangian
and Eulerian geometric setting, respectively, as already pointed out in (75h Taking into
account the derivatives of the ground invariants discussed above, we exploit the constitutive
functions for the evolution equations in Table I in a straightforward manner. This results
in the representation

,
G,G' == ), L 2¢iGP (1: Tr.]

i= I

for the plastic flow rules and

and :!lvcP = A±2¢,ic"(aT )i ]
i= 1

(86)

(87)

for the scalar internal variable with the notation ¢,:= cs,¢ and ¢,B:= cB¢' The plastic
parameter A is determined by the loading-unloading conditions in Table I. This rounds off
the particular set of constitutive equations for isotropic elastoplastic response formulated
in terms of invariants.

5.2. Isotropic elastoplasticity in terms oleigenvalues
We specify the set of constitutive elastoplastic equations summarized in Table 1 to

isotropic response formulated in terms of the elastic principal stretches and principal
stresses. This treatment results in a representation of constitutive response functions in
terms of the right and left eigenvectors of the mixed-variant elastic strain tensors introduced
in (79). Thus. we consider the eigenvalue problems

(88)

Here ().'},o I) are the elastic principal stretches. {N'},~ 13 E Txf!J and {N i : "0' I) E I1fJU are
the dual sets of Lagrangian right and left eigenvectors. {ni},o 13 E T,,9" and
{n,} ].. 3 E T';Y are their Eulerian counterparts. The Eulerian eigenvectors are connected
with their Lagrangian counterparts via the deformation map (I) and the tangent and
normal maps (2)

Oi = FN' ffJ I and 0i = F TN i ffJ·].

Note that the dual Lagrangian and Eulerian eigenvectors are related via

(89)

(90)

where [)i, denotes the Kronecker symbol. We assume in addition a normalization of the
eigenvectors with respect to the plastic metric, which plays the role of a reference metric
for the elastic response, i.e.
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F

T;S

{ ni}i:l,3

Fig. 6. Eigenvectors associated with local elastic deformation. {:'IIi},o. u and {Nil,. I.J are the dual
Lagrangian eigenvectors with N'· Ni = b;, Ni = GPN', l,lN, = eNi. {nil ,.. 1.3 and {n,},. 1.1 are the dual
Eulerian eigenvectors with n'· n) = b;, n, = cn' and ;Jni = gn'. Lagrangian and Eulerian

eigenvectors are connected according to n' = FN i If) I and nj = F- TN, II' ].

N i
• GpN' = I and 0" cPo' = I. (91)

(90) and (91) induce the relationships Ni = GpN' and 0i = cPoi. Within this context, we view
the reference metrics as maps GJ' : Tx :J1J -l> 7196 and eP : T,Y -l> P;/.I', respectively, as vis
ualized in Fig. 6. The normalization (91) with respect to the reference metric generates the
alternative normalization

N' . CN' = ;if and 0' • go' ;.f, (92)

inducing the relationships ifNi = CN i and )}ni = gn'. Thus, we also can view the current
metric as maps C: Tx96 -l> n.dJ and g: T,Y) -l> T~Y) as illustrated in Fig. 6. The eigenvalue
problems (88) yield the spectral representations

,
E =" I ;'}Ni®Ni and e = I ;.fni ® Oi

ic.c.;J
(93)

of the mixed-variant elastic strain tensors (79). Using the normalizations (91) and (92), we
derive from (93) the spectral forms

C = ±.. ;'fNi@Nili ,~:: 1.

,
GJ' = IN, ®Ni

i.1

and • ~ ,~"fn, ® n'l'
eP = I o,@n,

j",ol

(94)

We assume now a particular dependence of the isotropic free energy

on the logarithmic elastic principal strains fl:i} I.' defined by

I: i '= i ln [An

(95)

(96)

and the generic scalar internal variable A. Taking into account the derivatives
rJEi..; = Ni ® Niand tV..; = ni ® 0i of the principal strains by the mixed-variant elastic strain
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tensor, we exploit the constitutive expressions in Table I in a straightforward manner. This
results in the spectral representation

3

S = 2:: c,iA;N i ® Ni

; I

3

and r = 2:: c,/A;ni ® n'
;0=']

(97)

of the Lagrangian and Eulerian stresses in terms of the principal stresses

c.:= ,I:
I t.p,1

in the eigenvalue space.
Furthermore, we get again the result

for the plastic forces and

B:= -I~I

(98)

(99)

(100)

for the conjugate internal variable. Here we have used the notation ~/.i:= a,,~ and 0...1 := oA0.
Insertion of (97) into (99) yields with (94) the spectral form of the plastic forces. We assume
again an isotropic dependence of the yield criterion function on the mixed-variant driving
stress tensors

1::= 20'81' = CS and (1 := 2cl)rl' = gr (101 )

which are due to (99) related to the mixed-variant stresses CS and gr in the Lagrangian
and Eulerian geometric setting, respectively. These tensors have the spectral form

1: = 2:: CiN; ® Ni and (1 = 2:: Cini ® ni

, I I

which induce the formulation

(102)

(103)

of the yield criterion function in terms of the principal stresses and the conjugate internal
variable B. Based on this assumption we exploit the constitutive functions for the evolution
equations summarized in Table I. Taking into account (\c, = Ni ® N, and D"Ci = n' ® 0i we
get the representations

1

D,G" = ). 2:: 2(/~iNi ® Ni and
i,= ]

3

.'!lvel' = ic 2:: 2¢.ini ® ni
1-"1

(104)

of the flow rule in spectral form and the evolution equation

a,A = i¢s (105)

for the scalar internal variable with ¢.i:= a,,¢ and ¢s:= os¢. The plastic parameter A is
determined by the loading-unloading conditions in Table I. This rounds off the particular
set of constitutive equations for isotropic elastoplastic response formulated in terms of
eigenvalues. For an additional reading concerning formulations in principal strains we refer
to Ogden (1984), Miehe (I 994b. 1995b) and references therein.
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In this Section we consider specifications of the constitutive equations proposed in
Sections 2 and 3 to initially anisotropic elastoplastic response. As already pointed out in
Section 2. we describe effects of initial anisotropy by isotropic tensor functions with an
extended set of arguments. Thereby, we consider as a typical model problem the anisotropy
tensors in (5) and (8) as geometric structural variables. These geometric structural variables
are a priori given and therefore, not governed by a constitutive evolution equation. This is
in line with representations of anisotropic response functions proposed by Spencer (1971),
Smith (1971), Betten (1982), Boehler (1987) and others. In the following 1\\10 subsections
we discuss on this basis, possible approaches to the modelling of initially elastic and plastic
anisotropic response within both the general framework outlined in Section 2 and the
decoupled volumetric-isochoric framework of Section 3.

6.1. General initial anisotropic elastoplastic response
We discuss first a setting of initial anisotropic elastoplastic response within the general

framework outlined in Section 2. Here we turn our attention in succession to the description
of elastic anisotropy and plastic anisotropy, respectively, and demonstrate the conceptual
approach for the case of transverse initial isotropy.

6.1.1. General elastic anisotropic response. A particular class of anisotropic elastic
response can be characterized by formulation of the free energy function (13) in terms of
the second-order anisotropy variables A and oc introduced in (5). The geometric structural
variable A is considered as a priori given. This character of the variables for initial anisotropy
can be expressed by writing

a,A = 0 and!l,'X = O. (106)

A(X) determines for instance a preferred material orientation with respect to the reference
configuration. Then oc(x) is its convected form with respect to the Eulerian configuration.
The anisotropy variables are invariant with respect to rotations QE '§'j of the symmetry
group '§'j c S03 which characterizes the elastic response of the elastoplastic material under
consideration. The invariance is expressed by the condition

QAQ 1= A and qocq 1 'X \\lith q:= F" TQF T
" (p I VQ E (4'; (107)

within the Lagrangian and the Eulerian geometric setting, respectively. Note that the
anisotropy is formulated with respect to the reference configuration. Thus, the Eulerian
form of the invariance condition (107) is nothing more than the convected form of the
Lagrangian invariance condition based on the deformation of the Eulerian tensor q with
the property q-I = q, which depends on the local deformation.

As a concrete model problem we consider here the case of transversely isotropic
response. Then the anisotropy variables are given by the expressions

in terms of the given covariant Lagrangian vector field Me E T}.~ at X E.~ with the nor
malization Me. G -I • Me = 1. This covariant vector is mapped by (I) and (2h to the covari
ant Eulerian vector field m' E T~/I! at x E /I), which has the normalization constraint



3886 C. Miehe

F-T

F

Fig. 7. Anisotropy variables for general transverse anisotropy. The given covariant Lagrangian
anisotropy director M'- with Eulerian counterpart m'- = F .[M" If> ··1 describes an elastic anisotropy
direction. The given contravariant Lagrangian anisotropy director MP with Eulerian counterpart

ml' = FMP (fl'1 describes a plastic anisotropy direction.

me. C· I
• me = 1. Figure 7 visualizes these geometrical relationships. The symmetry group

~Ij; of the transversely isotropic elastic response is given by the rotations

(109)

which leaves (108) invariant. Here R!lM' = S02 are the arbitrary rotations about an axis
with director Me and RR J.M' denotes a rotation about a vector perpendicular to Me by the
angle n. We discuss in what follows different approaches to anisotropic elastic response
within an elastoplastic solid for this simple example of transverse isotropy. More com
plicated anisotropic response can be described by equipping the second-order tensors A
with more structure than (108), or even by taking into account higher order anisotropy
tensors. But the approach to the construction of advanced anisotropic response is con
ceptually identical to that demonstrated here.

For transversely anisotropic elastoplastic response we assume a dependence of the free
energy on the coupled invariants {I,}, ~ 1.5 of the elastic strain tensor (72h and the anisotropy
tensor (108). We restrict our consideration here to a formulation of ideal elastoplasticity.
The model can easily be extended to a description of isotropic and kinematic hardening
effects by taking into account, in addition, the hardening variables discussed in Sections 5
and 7. Thus, we consider the particular form

of (13). The invariants {1;} i 0" 1.5 are defined by

(110)

II := tr [EG]

12 := tr [(EG)2]/2

1J := tr [(EG)3]/3

14 := tr [EA]

15 := tr [EGEA]

II := tr [ec]

12 := tr [(ec)2]/2

or 13 := tr [(ec)3]/3

14 := tr [etX]

15 := tr [ecetX]

(III)

in terms of the Lagrangian and Eulerian elastic strain tensors

(112)

which has been introduced in (72h Based on the assumption (110) we evaluate the consti
tutive functions in Table I and the get the representations
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(l13)

(114)

for the plastic forces, Recall that the introduction of the variables (112) for the description
of the elastic response induces the relationships (114) between the plastic forces and the
stresses, see also (73h in Section 4. Note furthermore, that the stresses can always be
split up additively into isotropic parts and anisotropic parts where the latter contain the
anisotropy variables, This property is very helpful with regard to extensions of isotropic
elastic models to anisotropic elastic response, Due to the formulation of the coupled
invariants 14 and Is in (III) in terms of the elastic strain tensors (112) the anisotropy is
defined with respect to a plastic intermediate configuration, see Fig,S and the discussion in
Section 4. This assumption makes sense in the case of metal plasticity, where the anisotropy
properties are often assumed to be independent of the local plastic deformation, Alter
natively, one could define the coupled invariants in (111) in terms of the current metric by
setting for instance 14 := tr [G- ICG IA] and 15 := tr [G ICG-ICG IA] in the Lagrangian
form. Then the elastic initial anisotropy is defined with respect to the reference configuration
which yields the alternative representations Sani,otrop:= G -I [2~.4A+ 2~.s(AG -Ie +
CG IA)G I and S":=sym[Gp-1CS'S'"fOP] in (113) and (114), respectively, This could
describe a material consisting of elastic fibers within an isotropic elastoplastic matrix.

6.1,2, General plastic anisotropic response, In analogy to the elastic anisotropy dis
cussed above, we consider a particular class of anisotropic plastic response by formulating
the flow criterion function (22) in terms of the second-order anisotropy variables Band fJ
introduced in (8). The geometric structural variable B is considered as a priori given and
describes for instance an anisotropy director with respect to the reference configuration.
Thus, we have

( liS)

The anisotropy variable B(X) and its convected form fJ(x) are invariant under rotations
Q E~1~ of the symmetry group ~~ c SO 3 which characterizes the plastic response of the
material under consideration. The invariance is expressed by the condition

QBQI = Band qfJq 1= fJ with q:=F-TQFT"cp I VQE\§~ (116)

within the Lagrangian and Eulerian setting, respectively, As a model problem we consider
here again the case of transversely isotropic response where the anisotropy variables are
given by the expressions

in terms of the given contravariant Lagrangian unit vector M" E Txf!4 at X E.a1 with the
normalization M'" G . M" = I. This contravariant vector is mapped by (l) and (2) I to the
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Eulerian vector mP E T,Y' at x E Y' which has the normalization constraint mP' C' mP = I,
see also Fig. 7. The symmetry group (§~ of the transversely isotropic plastic response is
given by the rotations

(118)

where R 11w = S02 are arbitrary rotations about an axis with director MP and Rn
~w denotes

a rotation about a vector perpendicular to MI' by the angle n. Clearly, in many cases it will
make sense to choose for the plastic response the identical symmetry group as for the elastic
response by setting ~§/; == '§~.

For transversely anisotropic elastoplastic response we assume a dependence of the flow
criterion function on the coupled invariants {SiL~ 1.5 of driving stress (75)2 and the ani
sotropy tensor (117). By restricting ourselves to the case of ideal elastoplasticity, we then
consider the particular form

of (22). The invariants lSi}' IS are defined by

(119)

.'II :=tr[~GI""I]

S'2 := tr [(~Gt' 1)2]/2

S\ := tr [(~Gt' 1)']/3

S4:= tr [~B]

')5 := tr [~GI' J~B]

SI := tr [ucP- J]

S2 := tr [(ucJJ
-

1 )2]/2

or S,:=tr[(ucP- I )']/3

S4 := tr [uP]

S5 := tr [ucJ'- I uP]

(120)

in terms of the Lagrangian and Eulerian driving stress tensors

~:= GPSI'Gt' = sym [CSGt'] and u:= cPT;PcP = sym [gTCP] (121 )

which have been introduced in (75)2' It is the symmetrization of the mixed-variant stresses
CS and gT with respect to the plastic metric Gt' and cJ', respectively. Based on the assumption
(119) we evaluate the constitutive expressions for the evolution equations in Table 1 and
get the representations

!l,cJ' = I.{ el' [Li'" 1 2¢.icP 1 (l1cP I)' I ]el'
~-'--""-'--~--'~,------,- .._."._..,-",.---"~~'

(122)

NiHLl"'I"']'

of the plastic flow rules. The plastic parameter A is determined by the loading-unloading
conditions in Table I. The flow directions can be split up additively into isotropic parts and
anisotropic parts where the latter is a function of the anisotropy variables. This is an
important observation with regard to the construction of anisotropic flow models. As a
consequence of the formulation of the coupled invariants S4 and S5 in (120) in terms of
the driving stress tensor (121), the plastic anisotropy is defined with respect to a plastic
intermediate configuration. As already mentioned above, this assumption makes sense in
the case of metal plasticity where the anisotropy properties are often assumed to be
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independent of the local plastic deformation. Alternatively, one could define the coupled
invariants in (120) directly in terms of the plastic force by setting S4:= tr [GS"GB] and
Ss:= tr [GSGSGB] in the Lagrangian geometric representation. Then the plastic initial
anisotropy is defined with respect to the reference configuration and we have the modi
fications Nanisotrop:= G[2¢,4B+ 2¢,s(BGS" +S"GB)]G in (In), respectively.

6.2. Isochoric initial anisotropic elastoplastic response
We consider now a class of initial anisotropic elastoplastic constitutive model which

is restricted to the isochoric part of the deformation by applying the frame outlined in
Section 3. Here we proceed in the same way as in the subsection above and treat successively
elastic anisotropy and plastic anisotropy, respectively.

6.2.1. Isochoric elastic anisotropic response. We formulate the isochoric contribution
(62) to the free energy in terms of the second-order anisotropy variables A and 0( introduced
in (47) and (48). The geometric structural variable Ais considered as a priori given which
induces the properties

crA = 0 and!lvO( = O. (123)

A(X) determines possibly a preferred material orientation with respect to the volumetric
intermediate configuration, see Figs 3 and 4. O((x) is the convected form with respect to the
Eulerian configuration. The anisotropy variables are invariant with respect to rotations
QE ':§~ of the symmetry group (4'~ c SOj, i.e.

QAQ I and qO(q I = 0( with q:= F .. TQF T qJ IIiQ E (4"; (124)

within the Lagrangian and the Eulerian geometric setting, respectively. The Eulerian form
of the invariance condition (107) is nothing more than the convected form of the invariance
condition with respect to the volumetric intermediate configuration, transformed by the
nonlinear deformation map (I) and the modified tangent and normal maps defined in (46).
This defines the Eulerian tensor q with the property q I = q, which depends on the local
isochoric part of the deformation.

As a model problem we consider again the case of transversely isotropic response by
expressmg

A:= 1\1" (8) Me and 0(:= me (8) m" with me:= F TM" <) qJ 1 (125)

in terms of the given covariant Lagrangian vector fieldM" E11M at X EM of the volumetric
intermediate configuration with the normalization Me. G- t

• Me = I. This covariant vector
is mapped by (I) and (46h to the covariant Eulerian vector field me E T';Y' at x E ,Cf', which
has the normalization constraint me. c I. me = I. See Fig. 8 for a visualization of these

Fig. 8. Anisotropy variables for isochoric transverse anisotropy. The given covariant Lagrangian
anisotropy director M'" with Eulerian counterpart m'" = j:'- 1M' "1fJ 1 describes an elastic anisotropy
direction. The given contravariant Lagrangian anisotropy director M1' with Eulerian counterpart

mI' = FMP" IfJ - I describes a plastic anisotropy direction.
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geometrical relationships. The symmetry group rg~ of the transversely isochoric isotropic
elastic response is given by the rotations

(126)

which leaves (125) invariant.
For transversely anisotropic elastoplastic response we assume a dependence of the free

energy on the coupled invariants {lJ i~ 1.4 of the elastic strain tensor (72)2 and the anisotropy
tensor (125). We restrict our consideration again to a formulation of ideal e1astoplasticity
and consider the form

of (62). The invariants {J;} /.0 45 are defined by

(127)

1; := tr [EG] )

~.. := tr [~E_Gf]!2
1,:= tr[EA]

J: := tr [EGEA]

1; := tr [eel )

or ~:= tr [(ee)2]/2

13 := tr [e~]

L := tr [eee~]

(128)

in terms of the Lagrangian and Eulerian elastic strain tensors

(129)

which has been introduced in (72h. Based on the assumption (127) we evaluate the consti
tutive functions in Table 3 and get the representations

Sjso.i,nln)1'

+devc{GP I [2~'SO,3A+2~isoAAEG+GEA)](;r ·11._-_.__._----_._~ .j
Si~('.,lni'utror

(130)

tj,p,ilnivllrop

for the deviatoric stresses and

(131 )

for the deviatoric plastic forces. Recall that (131) transforms the deviators with respect to
the current metric to deviators with respect to the plastic metric. We observe again that the
stresses can be split up additively into isotropic and anisotropic parts. The anisotropy is
formulated with respect to a plastic intermediate configuration as discussed in Section 4. A
conceptual approach to a formulation of the anisotropy with respect to the reference
configuration has been discussed at the end of Section 6.1.1.

6.2.2. Isochoricplastic anisotropic response. Isochoric plastic response can be modelled
by formulating the flow criterion function (67) in terms of the second-order anisotropy
variables Band fJ introduced in (47) and (48). The geometric structural variable B is
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considered as a priori given and describes for instance an anisotropy director with respect
to the volumetric intermediate configuration, see Figs 4 and 5. Thus, we have

arB = 0 and ::l,P = o. (132)

The variables B(X) and P(x) are invariant under rotations Q E ~~ of the symmetry group
~~ c SO], i.e.

QBQI=B and qpq-I=p with q:=F- TQF-TqJ-l VQE~~ (133)

within the Lagrangian and Eulerian setting, respectively. For transverse isotropy we identify

B:=!VIP ®!VI" and p:= m" ® m" with mP :=F!VIP 0 qJ I (134)

in terms of the given contravariant vector !VII' ETx.?i at X E;JJ of the volumetric intermediate
configuration with the normalization !VIP. G" MP = I. This contravariant vector is mapped
by (I) and (46h to the Eulerian vector mPE T/f at XE if which has the normalization
constraint m"· C' mP = I, see also Fig. 8. The symmetry group ~#~ of the transversely
isotropic plastic response is given by the rotation

(135)

which leaves (134) invariant. In many cases it will make sense to choose the identical
symmetry group for the plastic response as for the elastic response by setting ~§I; == ~§3'

For transversely anisotropic elastoplastic response we assume a dependence of the flow
criterion function on the coupled invariants {S,},,, 14 of driving stress (75)2 and the ani
sotropy tensor (134). By restricting it to the case of ideal elastoplasticity. we then consider
the particular form

(136)

of (67). The invariants {s'L" 1.4 are defined by

.51:= tr [(tG'P 1)2]/2 51 := tr [(ucp

'1'11
2

)
52 := tr [(f'{;!' I)3Ji3 .52:= tr [(uc" I) ]]/3

5] := tr [tB]
or

5, := tr [uP]

S":4 := tr [tG''' ItB] .54 := tr [uc"- 1uP]

in terms of the Lagrangian and Eulerian deviatoric driving stress tensors

- - - - 1 -- -
~= dev(~,:GPS"GP f = sym [CSisoG"]}

(1:= dev,./' {cPr:"cp
] = sym [g't"isoC"]

(137)

(138)

It is the symmetrization of the mixed-variant stresses CSiso and gt!So with respect to the
plastic metric G" and cP, respectively. Based on the assumption (136) we evaluate the
constitutive expressions for the evolution equations in Table 3 and get the representations

+dev(~ {Gp[2¢.3B+2¢4(Bt{;P 1 +{;P ItB)]{;P}}
.. - -- _·,_·"_·__····_-_·_-_·-v-'_·_-,·_·_··,·_-_··_~·_---------~

NI~O,;'Lnl.'(:>Uor

(139)
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of the plastic flow rules. The plastic parameter v is determined by the loading--unloading
conditions in Table 3. The flow directions can be split up additively into isotropic parts and
anisotropic parts, where the latter is a function of the anisotropy variables. For an alter
native formulation of the anisotropy with respect to the reference configuration we refer to
the discussion at the beginning of Section 6.1.2. Observe furthermore. that the flow rules
(J 39) preserve exactly the plastic volume. They satisfy the conditions

and (140)

which are often referred to as the plastic incompressibility constraint.

7. APPLICATION TO INDUCED ANISOTROPIC ELASTOPLASTIC RESPONSE

This Section is devoted to a short conceptual discussion of the modelling of induced
anisotropy efTects within the framework of elastoplasticity discussed in Sections 2 and 3.
The phenomenon of induced anisotropy is an effect which develops during the inelastic
deformation process. Thus, in contrast to the case of initial anisotropy discussed above, the
anisotropy variables are now not a priori given by develop during the inelastic deformation
process, governed by constitutive evolution equations. A typical example of induced ani
sotropy is the damage accumulation due to microcracks if one takes into account its
orientated character. Another example is the kinematic hardening phenomenon in metals,
the so-called Bauschinger effect. which is a consequence of the texture development in
polycrystalline metallic materials.

The framework for the description of induced anisotropy has already been set up in
Sections 2 and 3. A particular class of anisotropic elastoplastic materials can be described
by the second-order anisotropy variables introduced in (5) and (8). The canonical form of
the constitutive evolution equations for these variables have been presented in Tables 2 and
3 for general elastoplastic response and isochoric elastoplastic response, respectively. We
consider here as a model problem a particular form of kinematic hardening based on internal
micromechanical free energy storage as suggested by Miehe (1996c). It is a straightforward
generalization of the classical Melan-Prager type model of the geometric linear theory.
Because this phenomenon is mainly associated with metal plasticity, we restrict here our
consideration a priori to isochoric response and apply the framework outlined in Section
3.

We assume a dependence of the free energy on the invariants [T} 1.4 of the elastic
strain tensor (72), and the anisotropy tensor (5) and consider the particular form

of (62). The invariants {T); 1.4 are defined by

(141)

1; := tr [E]

I~ := tr [E2]/2

l,:= tr[AG I]

I: := tr [(AG 1)2]/2

1; := tr [e]

I~ := tr [e2]/2
or

1; := tr [oce- I]

~ := tr [(oce 1)2]/2

(142)

in terms of the Lagrangian and Eulerian mixed-variant elastic strain tensors

E := (:0' 1 and e:= gel' I, (143)

see also (72)) and (79) and the mixed-variant anisotropy variables AG 1and oce-I. Note
that the Lagrangian representation is formulated in terms of the variables defined in (47)
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relative to the volumetric intermediate configuration, see also Figs 3 and 4. Based on the
assumption (141) we evaluate the constitutive functions in Table 3 and get the rep
resentations

for the stresses.

C!' := _~I j"." I C-S-""(\ d J] I ~P 1cr _\..T, an t :=2 \.- g,lSO

for the plastic forces and

(145)

4

B = - I 2~lSo,G 1(AG I),}]
j= ~

4

and p = - I 2~;iSO.iC-I(IXC-I)i-']
i=J

(146)

for the conjugate anisotropy variable. The stresses (144) are deviatoric with respect to the
current metric and the plastic forces (145) are deviatoric with respect to the plastic metric.
As a typical assumption for the description of kinematic hardening we consider the yield
criterion function

as a particular form of (67). The invariants ['S:-i) 12 are defined by

(147)

:1 := tr [tr
2]/2l

8 2 := tr [tr']/3J
(148)

in terms of the Lagrangian and Eulerian driving stress tensors

(149)

The conjugate anisotropy variables Band p play the role of the (negative) back stresses.
Note furthermore, that the driving stress (149) is a priori assumed to be deviatoric. Then
the evaluation of the constitutive functions for the evolution equations in Table 3 gives the
representations

for the plastic metric and

(151)

for the anisotropy variable. The plastic parameter v is determined by the loading-unloading
conditions in Table 3. Assuming identical initial conditions for the anisotropy variables A,
IX and the plastic metric Gr, cP, we get from canonical evolution eqn (lSI) the identification

A = (;1' and x = cI'. (152)

Thus, for the proposed canonical model the anisotropy variables Aand IX turn out to be
identical with the plastic metric. This is consistent with the classical model of kinematic
hardening suggested by Melan (1939) for the geometric linear theory. Thus, the negative
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back stresses Band fJ are defined in terms of the general hyperelastic constitutive function
(146) in terms of the plastic metric. Consider as a model problem the ansatz t/Jmicro

= k[L - 1;]/2 of the free energy for the micro-stress storage associated with kinematic
hardening where k > 0 is a scalar material parameter. Then we derive from (146) with the
identification (152) the constitutive expressions B = - k[G -IG'G--] - G-I] and
fJ -k[C-1c"C-I_C"]] for the negative back stresses within the Lagrangian and Eulerian
representation, respectively. These equations constitute a straightforward generalization of
the classical Melan-Prager type kinematic hardening model to the theoretical frame of
large-strain elastoplasticity proposed here.

8. CONCLUSION

A constitutive framework oflarge strain elastoplasticity has been presented for general
anisotropic material response. The proposed representation has a strong underlying geo
metric accent with an orientation towards concepts of irreversible thermodynamics. The
essential ingredients of the theory are the introduction of a plastic metric with six inde
pendent degrees for description of the history-dependent inelastic material response and
the definition of a convex elastic domain in the space of the plastic forces conjugate to the
plastic metric. The central constitutive functions for the description of the stored free energy
and the yield criterion, see (13), (22), (62) and (67), are formulated as isotropic tensor
functions in terms of extended arguments, denoted as anisotropy variables. The latter take
into account effects of initial and induced anisotropy which we represent in a coordinate
free format. The representation of the constitutive functions are forced to have the identical
structure within th(: Lagrangian and Eulerian geometric setting, thus characterizing a
covariant theory. This has been demonstrated by considering both geometric settings in
parallel throughout the whole paper. The set-up of canonical evolution equations, con
structed on the basis of a thermodynamic extremum principle, results in the constitutive set
summarized in Table I. This canonical set is characterized by symmetric elastoplastic
tangent moduli as proved in (39). A further key aspect is the proposed decomposition of
the constitutive set in Table 1 into decoupled volumetric and isochoric parts summarized
in Tables 2 and 3. respectively. This has been achieved based on the notion of a volumetric
intermediate configuration and the split of the free energy and the local dissipation into
decoupled volumetric and isochoric contributions, see (51) and (54), yielding the decompo
sition (52) of the stresses into decoupled spherical and deviatoric parts. This offers for
instance, a geometric consistent restriction of anisotropy properties to the isochoric part of
the deformation. The proposed constitutive frame of elastoplasticity has been applied to
several model problems. In the context. we considered first, possible elastic strain measures
and investigated the induced identification of the plastic forces in terms of the stresses, see
(72) and (73). The first application was concerned with isotropic elastoplastic response.
Here we proposed two new compact settings in terms of invariants and eigenvalues of a
mixed-variant elastic strain measure. see (77), (83), (95) and (103). respectively_ A key
result within this context has been a spectral representation of the isotropic elastoplastic
constitutive equations in terms of dual covariant and contravariant eigenvector triads.
Finally. we discussed the conceptual modelling of initial and induced anisotropy within the
framework proposed here. Here we considered as a model problem the effect of transversely
initial anisotropy for general and purely isochoric response see (110), (119). (127) and
(136). We then suggested an extension of the classical Melan-type kinematic hardening
model to the nonlinear framework proposed here. see (141) and (147). The algorithmic
formulation and the numerical implementation associated with the constitutive framework
and the model problems presented here will be discussed in a forthcoming paper.
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